• Bending

    Bending is a manufacturing process that produces a V-shape, U-shape, or channel shape along a straight axis in ductile materials, most commonly sheet metal. Commonly used equipment include box and pan brakes, brake presses, and other specialized machine presses. Typical products that are made like this are boxes such as electrical enclosures and rectangular ductwork.
    There are three basic types of bending on a press brake, each is defined by the relationship of the end tool position to the thickness of the material. These three are Air Bending, Bottoming and Coining. The configuration of the tools for these three types of bending are nearly identical. A die with a long rail form tool with a radiused tip that locates the inside profile of the bend is called a punch. Punches are usually attached to the ram of the machine by clamps and move to produce the bending force. A die with a long rail form tool that has concave or V shaped lengthwise channel that locate the outside profile of the form is called a die. Dies are usually stationary and located under the material on the bed of the machine. Note that some locations do not differentiate between the two different kinds of dies (punches and dies.)

  • Sheering

    Shearing, also known as die cutting,[1] is a process which cuts stock without the formation of chips or the use of burning or melting. Strictly speaking, if the cutting blades are straight the process is called shearing; if the cutting blades are curved then they are shearing-type operations. The most commonly sheared materials are in the form of sheet metal or plates, however rods can also be sheared. Shearing-type operations include: blanking, piercing, roll slitting, and trimming. It is used in metalworking and also with paper and plastics.

  • Punch

    Punching is a metal forming process that uses a punch press to force a tool, called a punch, through the workpiece to create a hole via shearing. The punch often passes through the work into a die. A scrap slug from the hole is deposited into the die in the process. Depending on the material being punched this slug may be recycled and reused or discarded. Punching is often the cheapest method for creating holes in sheet metal in medium to high production volumes. When a specially shaped punch is used to create multiple usable parts from a sheet of material the process is known as blanking. In forging applications the work is often punched while hot, and this is called hot punching.

  • Press

    A Forming Press, commonly shortened to press, is a machine tool that changes the shape of a workpiece. Presses can be classified according to

    - Their mechanism: hydraulic, mechanical, pneumatic
    - Their function: forging presses, stamping presses, press brakes, Press brake,punch press, etc.
    - Their structure, e.g. Knuckle-joint press, screw press
    - Their controllability: conventional vs. servo-presses


    Machine presses can be hazardous, so safety measures must always be taken. Bi-manual controls (controls the use of which requires both hands to be on the buttons to operate) are a very good way to prevent accidents, as are light sensors that keep the machine from working if the operator is in range of the die.

  • Plasma

    Plasma Cutting is a process that is used to cut steel and other metals of different thicknesses (or sometimes other materials) using a plasma torch. In this process, an inert gas (in some units, compressed air) is blown at high speed out of a nozzle; at the same time an electrical arc is formed through that gas from the nozzle to the surface being cut, turning some of that gas to plasma. The plasma is sufficiently hot to melt the metal being cut and moves sufficiently fast to blow molten metal away from the cut.The HF type plasma cutting machines uses a high-frequency, high-voltage spark to ionize the air through the torch head and initiate an arc. These do not require the torch to be in contact with the job material when starting, and so are suitable for applications involving computer numerical controlled (CNC) cutting. More basic machines require tip contact (scratch) with the parent metal to start and then gap separation can occur similar to DC type TIG welders. These more basic type cutters are more susceptible to contact tip and shield damage on starting.

  • Welding

    Welding, is a fabrication or sculptural process that joins materials, usually metals or thermoplastics, by causing coalescence. This is often done by melting the workpieces and adding a filler material to form a pool of molten material (the weld pool) that cools to become a strong joint, with pressure sometimes used in conjunction with heat, or by itself, to produce the weld. This is in contrast with soldering and brazing, which involve melting a lower-melting-point material between the workpieces to form a bond between them, without melting the workpieces.Many different energy sources can be used for welding, including a gas flame, an electric arc, a laser, an electron beam, friction, and ultrasound. While often an industrial process, welding may be performed in many different environments, including open air, under water and in outer space. Welding is a potentially hazardous undertaking and precautions are required to avoid burns, electric shock, vision damage, inhalation of poisonous gases and fumes, and exposure to intense ultraviolet radiation.

  • Grinding

    Grinding is an abrasive machining process that uses a grinding wheel as the cutting tool.
    A wide variety of machines are used for grinding:

    - Hand-cranked knife-sharpening stones (grindstones)
    - Handheld power tools such as angle grinders and die grinders
    - Various kinds of expensive industrial machine tools called grinding machines
    - Bench grinders often found in residential garages and basements.


    Grinding practice is a large and diverse area of manufacturing and toolmaking. It can produce very fine finishes and very accurate dimensions; yet in mass production contexts it can also rough out large volumes of metal quite rapidly. It is usually better suited to the machining of very hard materials than is "regular" machining , and until recent decades it was the only practical way to machine such materials as hardened steels.